Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts.

نویسندگان

  • C Neubauer
  • H Y Yamamoto
چکیده

Induction of zeaxanthin formation and the associated nonphotochemical quenching in iodoacetamide-treated, non-CO(2)-fixing intact chloroplasts of Lactuca sativa L. cv Romaine is reported. The electron transport needed to generate the required DeltapH for zeaxanthin formation and nonphotochemical quenching are ascribed to the Mehler-ascorbate peroxidase reaction. KCN, an inhibitor of ascorbate peroxidase, significantly affected these activities without affecting linear electron transport to methyl viologen or violaxanthin deepoxidase activity. At 1 millimolar KCN, zeaxanthin formation and DeltapH were inhibited 60 and 55%, respectively, whereas ascorbate peroxidase activity was inhibited almost totally. The KCN-resistant activity, which apparently was due to electron transport mediated by the Mehler reaction alone, however, was insufficient to support a high level of nonphotochemical quenching. We suggest that in vivo, as CO(2) fixation becomes limiting, the Mehler-peroxidase reaction protects photosystem II against the excess light by supporting the electron transport needed for zeaxanthin-dependent nonphotochemical quenching and concomitantly scavenging H(2)O(2). Ascorbate is essential for this process to occur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Effects of Dithiothreitol on Nonphotochemical Fluorescence Quenching in Intact Chloroplasts (Influence on Violaxanthin De-epoxidase and Ascorbate Peroxidase Activity).

Reversible nonphotochemical fluorescence quenching depends on thylakoid lumen acidification and violaxanthin de-epoxidation and is correlated with photoprotection of photosynthesis. The O2-dependent electron flow in the coupled Mehler-ascorbate peroxidase reaction (MP-reaction) mediates the electron flow necessary for lumen acidification and violaxanthin de-epoxidation in isolated, intact chlor...

متن کامل

Zeaxanthin Formation and Energy-Dependent Fluorescence Quenching in Pea Chloroplasts under Artificially Mediated Linear and Cyclic Electron Transport.

Artificially mediated linear (methylviologen) and cyclic (phenazine methosulfate) electron transport induced zeaxanthin-dependent and independent (constitutive) nonphotochemical quenching in osmotically shocked chloroplasts of pea (Pisum sativum L. cv Oregon). Nonphotochemical quenching was quantitated as Stern-Volmer quenching (SV(N)) calculated as (F(m)/F'(m))-1 where F(m) is the fluorescence...

متن کامل

Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts.

Dithiothreitol, which completely inhibits the de-epoxidation of violaxanthin to zeaxanthin, was used to obtain evidence for a causal relationship between zeaxanthin and the dissipation of excess excitation energy in the photochemical apparatus in Spinicia oleracea L. In both leaves and chloroplasts, inhibition of zeaxanthin formation by dithiothreitol was accompanied by inhibition of a componen...

متن کامل

The Dynamics of Energy Dissipation and Xanthophyll Conversion in Arabidopsis Indicate an Indirect Photoprotective Role of Zeaxanthin in Slowly Inducible and Relaxing Components of Non-photochemical Quenching of Excitation Energy

The dynamics of non-photochemical quenching (NPQ) of chlorophyll fluorescence and the dynamics of xanthophyll conversion under different actinic light conditions were studied in intact leaves of Arabidopsis thaliana. NPQ induction was investigated during up to 180 min illumination at 450, 900, and 1,800 μmol photons m-2 s-1 (μE) and NPQ relaxation after 5, 30, 90, or 180 min of pre-illumination...

متن کامل

Chlamydomonas Xanthophyll Cycle Mutants Identified by Video Imaging of Chlorophyll Fluorescence Quenching.

The photosynthetic apparatus in plants is protected against oxidative damage by processes that dissipate excess absorbed light energy as heat within the light-harvesting complexes. This dissipation of excitation energy is measured as nonphotochemical quenching of chlorophyll fluorescence. Nonphotochemical quenching depends primarily on the [delta]pH that is generated by photosynthetic electron ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 99 4  شماره 

صفحات  -

تاریخ انتشار 1992